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synopsis 
The analysis of various deformations of an ordinary elastic body and a highly 

elastic body accompanied by temperature changes shows that, in distinction to iso- 
thermic conditions, under adiabatic conditions the dynamic characteristics of a polymer 
in a highly elastic state depend on the amplitude of the applied stress (in particular, their 
position on a frequency or temperature scale), which is associated with the entropic 
nature of the highly elastic deformation. 

When describing the relaxation phenomena caused by the response of the system 
of interacting kinetic units to the external perturbation, the nonequilibrium thermo- 
dynamics relationship between the “flow” and the “generalized force” is nonlinear 
even at  small deviations from the equilibrium state. In this case the dependency of 
the kinetic factor on the response can be presented by eq. (40). 

Considered herein were such particular relaxation phenomena as creep and stress 
relaxation. The calculated dependencies agree well with the experimental data. 

The thermodynamics of irreversible processes has extensive application 
in the description of relaxation phenomena in a great variety of systems.’ 
Its method, as applied to chemical reactions, has been developed earlier in 
De Donder’s w ~ r k . ~ , ~  Then Mandelshtam and Leontovi~h~.~ independently 
worked out a thermodynamic method applicable to the relaxation processes 
in gases and liquids. 

OnsagerY determination of “mutuality” relationships between factors 
of linear equations, which essentially are the phenomenological laws gov- 
erning nonequilibrium processes, and another formulation of these r e  
lationships proposed by Casimir7z8 which made them applicable to a greater 
variety of irreversible phenomena than those initially presupposed by 
Onsager, resulted in the development by MeixnergJo and then by Prigo- 
gine” of a coordinated phenomenological theory. Further different 
trends appeared to have rapidly developed within this theory. The ap- 
plicability of the nonequilibrium thermodynamics as developed is limited 
by the description of irreversible processes possessing linear characte&ics. 
It is assumed that, in general, at least in the case of small deviations from 
the thermodynamic equilibrium, the relationships between “flows” and 
“generalized forces” should be linear. However, when describing relaxa- 
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tion phenomena depending on the response of the system of interacting 
kinetic units to an external perturbation, these relationships appear to be 
nonlinear even at small deviations from the equilibrium. 

As has been previously stated, l2 dynamic measurements made during 
the study of relaxation properties of polymers are adiabatic rather than 
isothermic. The evaluation of the difference between the adiabatic and 
isothermic module of both ordinary elastic bodies and those whose shear 
modulus is directly proportional to T is based on thermodynamic calcula- 
tions, with time dependencies not taken into account, and shows that in 
many cases time dependency can be neglected.12 

In deformations accompanied by temperature changes, with time de- 
pendencies being taken into account, attempts are made to evaluate what 
the energy dissipation caused by heat flow contributes to the mechanical 
losses and, hence, to evaluate the magnitude of change in the pseudopor- 
tions of the modulus at the transition from isothermic to adiabatic condi- 
tions.12 Analysis of viscoelasticity with the help of the thermodynamics 
of irreversible processes13 has shown that in the case of adiabatic conditions 
the relaxation spectrum occurs at somewhat smaller time values than in the 
case of isothermic conditions. 

The deformations accompanied by changes in the temperature of a 
body have been ~onsidered.'~.'6 The final dependencies of stress upon 
deformation and temperature changes obtained in these works in the con- 
sidered approximation (when external effects, temperature changes, and 
deviations from the thermodynamic equilibrium are not very high) are 
supposed to be applicable to ordinary elastic bodies. It may be actually 
shown that such relationships are inherent in highly elastic bodies (inverse 
sign of thermal effect at the deformation should be taken into account in 
this case), while more simple dependencies are characteristic of the ordinary 
elastic bodies. 

For this reason, it is necessary to analyze the different effects of the 
adiabatic conditions of deformation upon the dynamic characteristics of an 
ordinary elastic body and a highly elastic one. Such an analysis shows 
that when the deformations are adiabatic, the dynamic characteristics of 
highly elastic bodies depend upon the amplitude of the applied stress even 
at small external effects. 

Nonisothermic Deformations 

Firstly, let us briefly consider the deformation process of an ordinary 
elastic body which accompanies temperature changes. For simplification, 
we shall consider only a linear stress state and one relaxation mechanism 
(described by one relaxation time), which in the case of polymers in the 
highly elastic state can be represented by the orientation of macromolecule 
segments in the field of action of mechanical forces, this orientation being 
characterized by an internal parameter. 
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Assuming that the free energy of a unit volume of the deformed body 
is F = F(a, [, T ) ,  in a first approximation we can write 

F = FO + r ( T  - TO)€ + ‘/z~I,€’ + %E[ + ‘/2a3E2 (1) 

where Fo is the free energy; To is the temperature of a body in the nonde- 
formed state, y; and al, az, and a3 are material constants. 

It is considered in this case that in the state of the thermodynamic 
equilibrium at B = 0 and T = Toa = (bF/be), = 0, the free energy reaches 
its minimum value and b2F/d.@T = -bS/b[ E. Therefore, in distinction 
to FustovI4 and Shermergor,l5 (b2F/bTbE(T - To){)  member is absent in 
the decomposition eq. (1). This in turn makes the equilibrium value E 
independent of temperature changes. Actually, the minimum of free 
energy in the equilibrium state gives g = -aZ/a3E. Then eq. (1) for free 
energy may be written as follows: 

F = FO + r ( T  - TO)€ + ‘/z a1 - - 6’ + ‘/Za3(4 - f.)2 (2) ( 3 
As follows from the ordinary elasticity theory,16 in the case of linear 

stressed state the expression for free energy takes the following form: 

F = Fo - [E,(Y(T - To)€] + 1/2Em~2. 

F = Fo - [E,a(T - To)E]  + ‘/zErn~’ + ‘/zas(E - F ) z  

(3) 

(4) 

Comparing expressions (2) and (3) at E = f., we finally obtain 

where E,  is the equilibrium (relaxed) elasticity modulus and CY is the linear 
thermal expansion factor. 

Using the linear phenomenological relationship from the nonequilibrium 
thermodynamics between the “flow” and “generalized force,” X = 

-(g)T,: and taking into account that a = rg)T,, from expression (4) 

we shall find that 
t S- m 

a = E,B - [E,a(T - To)] + 
t -t‘ -- 

E’e r’ ;(t’)dt’ (5)  

where E’ = az2/&, T’ = l/a3L, L is the kinetic factor, and Eo = (E, + 
E’) is the nonrelaxed isothermic modulus. Should the equilibrium value 
of the inner variable depend upon temperature changes, according to eqs. 
(12) and (13), we obtain 

t - t f  t -- 
u = E,B - E,a(T - To) + Swr E‘e T’ i(t’)dt’ 

t 4‘ -- 
E’a’e r’ p(l’)dt’ (6) - SI. 

instead of eq. (5). 
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The nondependence of the equilibrium value f‘ on temperature changes is 
natural in the considered approximation for an ordinary elastic body whose 
deformation is associated mainly with the changes of intrinsic energy. At 
the same time, in the case of a highly elastic body whose deformation is 
governed by the relationship between the orienting effect of the mechanical 
force field and the disorienting effect of the heat flow of macromolecule 
segments, the equilibrium value of the inner parameter will obviously 
depend on temperature changes, which leads to eq. (6). 

Now we shall take into account the heat exchange between the body and 
the ambient medium. From eq. (4) we shall obtain the following relation 
for the entropy per unit volume of the deformed body: 

S = So + E , ~ E .  

The amount of heat released by unit volume of body per time unit Q (if, 
for example, the body temperature is higher than that of the ambient 
medium) is equal to - T d  + X t .  

On the other hand, in the approximation of the nonequilibrium thermo- 
dynarni~s,~’.~8 

(7) 

Q = B(T - To) (8) 
where p > 0 is the heat coefficient. 

Then we shall find from eqs. (7) and (8) a linearized relative to t :  

where C, is the thermal capacity a t  the constant deformation. It can be 

seen from eq. (9) that a t  E = const., rT = - is the relaxation time deter- 

mining the rate at which the thermal equilibrium is obtained between the 
body and the ambient medium. 

ce 
B 

Integrating eq. (9) with respect to eq. (5),  we obtain 

As we consider small deformations accompanied by small temperature 
changes, changes in 7‘ as well as rT with temperature in the deformation 
process are neglected. 

The first summand of expression (10) incorporates the equilibrium de- 
formation of the body, the second summand incorporates the relaxation 
caused by the process of heat exchange between the body and the ambient 
medium, and the third incorporates the relaxation associated with the 
deviation of f‘ from the equilibrium value. 

If the deformation process passes a t  such a rate that at every given mo- 
ment the thermal equilibrium (m << t )  is obtained between body and 
ambient medium, instead of eq. (10) we shall have 
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t -1' t - -  
u = E r n e  + J-: E'e I' i(t')dt'. 

If the deformation occurs so rapidly that the process of heat exchange 
between the body and the medium fails to occur (rT << t ) ,  we obtain 

t t -1' 

u = E m a d t  + J-- Ere- 7 i(t')dt' (12) 

a2To 
c, where E m a d  = E, + Em2 - is the adiabatic relaxed modulus of elasticity 

(ordinary relation determined by equilibrium thermodynamics). 
At E = toeiwt we shall have for the complex modulus of elasticity 

(13) 
iwr' a2To ~ W T T  

+ Ern2 y*G-G; E*(w) = E, + E' ~ 

1 + iwr' 

Now let us proceed to the consideration of the deformation processes of 
highly elastic bodies. As is known, polymers can be in three physical 
states, namely, glassy, highly elastic, and viscofluidic states. As far as 
deformation behavior is concerned, polymers are close to solid bodies in 
the glassy state and to fluids in the viscofluidic state. Highly elastic de- 
formation is inherent only in polymers and is caused by changes in entropy 
during the course of deformation. In  the case of isothermic deformation, 
instead of eq. (4) we have 

F = Fo + '/2Emt2 + '/zu~([ - g)'. (14) 

Since S = -dF/bT, we find that the entropy change in the deformation 
process is equal to zero and hence eq (14) does not incorporate the peculiari- 
ties of the highly elastic state. If the constants in eq. (14) depend on 
temperature, the entropy changes in the deformation process will differ 
from zero. Actually it can be shown that the expression for the free 
energy of an isothermally deformed polymer in the highly elastic state has 
the form of eq. (14), but with the constants linearly depending on tempera- 
ture. Write F(E,  €, T )  into a sequence with accuracy up to members 
of the third order. Since considered herein are small deformations and 
small deviations from the thermodynamic equilibrium state, we omit mem- 
bers of the third order relative to t and € in the given decomposition and 
obtain 

F = FO + yTt + ' / m e 2  + wf + '/za3t2 + T ( ' / d T t  

+ ' / 2 ~ " 7 ' 5  + '/&it2 + BzeE + ' /zBd2) .  (15) 

As call be seen from the comparison of eq. (15) with eq. (l), member ap- 
pears in the decomposition due to the temperature changes in the course 
of deformation. Naturally, it may be supposed that the y'Te and y"T5 
members are contained in eq. (15) for the same reason. Then, in tlie case 
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of the isothermal process of deformation, eq. (15) may be written in the 
following form: 

F = FO + ‘/tale2 + a z e t  + ‘ / z u ~  E2 + T(’/zBle2 + B2eE + ‘ / ~ B 3 5 ‘ ~ )  (16) 
where three summands are associated with the changes of intrinsic energy 
at  the deformation and the summands at T are associated with the changes 
of entropy in the deformation process which is caused by the heat motion 
of macromolecule segments. The positive sign in front of T is due to the 
fact that BI = (b3F)/(be2bT), Bz = (d3F)/(debfbT), B3 = (d3F)/(bE2bT), 
and S = -bF/dT (in the state of thermodynamic equilibrium entropy is 
maximum and B = 0, u = 0). It is obvious that using eq. (16) we shall 
obtain dependence u = f(e) of the eq. (11) form, but with E and E’ de- 
pending on T .  

Consider then the deformation of a polymer in the highly elastic physical 
state, with temperature changes taken into account and the elastic com- 
ponent of the full deformation being neglected. Then we may write the 
following for the entropy of the deformed polymer: 

S = So - r’(T - To) - y”(T -  TO)^ - ‘/&e2 - BzeE - ‘/zB2f2, (17) 
where the yTe member of decomposition eq. (15) is omitted, since y = b2F/ 
brbT = - bS/de. When only the highly elastic component of the full de- 

and hence y = 0, formation is taken into account, u = - T  

since at  e = 0, u = 0. As at T = TO the body is in the nondeformed state, 
To is introduced into the decomposition. Based on the condition that the 
entropy in the thermodynamic equilibrium state is a t  its maximum, we 
find = - (BZ/&)e - [y”/Ba(T - To)] .  Then in the same way as that 
used for the ordinary elastic body we obtain 

r% 

u = E,B + E,a(T - To) + E‘ 

J - m  

where E’ = (Bz2/B3)T, E‘a’ = ( B ~ Y ” / B ~ ) T ,  E,  = [BI - (Bz2/&)]T, 
E,a = IT’ - (y1’&/B3)]T. Unlike in eq. (5) ,  the presence of the sum- 
mand with T(t’) in this expression is caused by the dependence of the inner 
parameter of the equilibrium value upon the temperature change. Now 
take into account the heat exchange between the body and the ambient 
medium. Proceeding in the same way which was used for the ordinary 
elastic body, we shall use eq. (17) with the reverse sign of thermal effects 
at the deformation of a highly elastic body being taken into account. As 
a result we obtain 
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Y" where CP = Co - E,ae - -y'To([ - F) + *To(T - To) and is the 

dynamic thermal capacity a t  the constant deformation and inner parameter, 
and C, is the equilibrium thermal capacity. Since considered herein are 
small deviations from the state of thermodynamic equilibrium, taking 

1 

7 
account of = - - (< - f) we shall have instead of expression (19) 

For the ordinary elastic body C," will convert into C,, and then consider- 
ing the expression for the free energy of a low molecular weight solid body, 
eq. (4), we can write 

E& 
CP C p  be C,h&T CP 

- -To-- -*  TobS To b2F _ _ _ - _ _ _ _ -  U - _ -  - 

In the case of adiabatic deformation we obtain from ey. (20) 

U 
dT = - de 

CP 

which is the so-called thermomechanical effect which simply results from 
the equilibrium thermodynamic theory of the highly elastic deformation. 
The only difference is that in eq. (21) the thermal capacity changes at 
the deformation, while in the equilibrium theory it is assumed to remain 
constant. 

The experimental data relating to small elongations are in satisfactory 
agreement with the relation obtained from equilibrium thermodynamics. 
Hence, in the first approximation the changes of thermal capacity in the 
course of deformation may be neglected in eq. (21). Then introducing 
eq. (21) into eq. (18) we obtain the following expression at  e = eoeiwf: 

iwE,ar OD + ~ u(t - UlW)e-"'dU U i W T f  
- = Em -/- E' 
€ 1 + iwr' C6 

U 
a(t-Ulw)e - iwu - - dU. (22) 

7.  

Thus, while in the case of an ordinary elastic body the transition from 
the isothermic to the adiabatic deformation is accompanied only by the 
replacement of E (relaxed isothermic modulus) with E m a d  (adiabatic mod- 
ulus), which can be neglected, in the case of the highly elastic body an ad- 
dition appears in the expression for E*, which depends on WT' and on the 
amplitude of the applied stress. Thus, as can be seen from eq. (22), under 
adiabatic conditions the position of dynamic characteristics on a frequency 
or temperature scale depends on the amplitude of the applied stress. 
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RESPONSE TO THE EXTERNAL PERTURBATION 
OF INTERACTING KINETIC UNITS 

If u and T are taken as independent variables, the thermodynamic po- 
tential $J should be used instead of free energy F ,  eq. (14). Any solid body, 
including a polymeric one, possesses a set of relaxation mechanisms. In  
the given case we shall consider the mobility of only certain kinetic units. 
I n  this case, response R of the system of kinetic units (for example, the 
segments of macromolecules) to the external perturbation will be used as 
the inner parameter. Under certain present external conditions (nature 
and rate of external perturbation, temperature), the considered system 
responds to the effect of the applied force thus causing a respective relaxa- 
tion phenomenon in a certain range of the time (or frequency) scale. In  
this case (as before, we consider linear stressed state) we can write the 
following for the isothermic deformation: 

e = JQu + XR (23) 

where X is the factor of proportionality. If the velocity is infinitely high, 
the system fails to respond to the effect of the external force. In  this case, 
R = 0 and JQ represents nonrelaxed pliability. At the infinitely slow effect 
of the external force the process of the system’s response will be thermo- 
dynamically reversible and in the linear approximation we shall have the 
following expression for the equilibrium response: 

a = X(0)u (24) 

where X(0) is the static mechanical susceptibility. Instead of eq. (23) we 
may write e = J,u, where J ,  = (Jo + XX(0)a) is the relaxed pliability. If 
the response to the external perturbation is not thermodynamically re- 
versible, by decomposing the thermodynamic potential of the responded 
system = $J(uRT) with respect to R degrees with an accuracy up to the 
members of the second order, we obtain 

(25) $J = A ( T )  + B(u1T)R + C(u1T)R2. 

Assuming that in the equilibrium state the thermodynamic potential 
reaches its minimum and using eq. (24) and taking into account that in 
the case of equilibrium response process R of the considered system of kinetic 
units = +, -uX(0(u2/2 is - ( d $ J / d ~ ) ~ ,  we find factors B = -u and 
C = 1/2x in decomposition eq. (25). We then obtain 

Using the linear phenomenological relation of nonequihbrium thermo- 
dynamics between “flow” R and “generalized force” X = - (dq/dR) T,r,  

we obtain 

R = L X .  (27) 
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Taking into account eq. (26)) we find 

1 
R =  - - ( R - X  (28) 

where r = x0 and L is the kinetic factor. Instead of eq. (28) we may 

write 

7 

L 

1 . g + - t =  -xi 
7 

where .$ = R - 17. 
we obtain 

Integrating eq. (29) and taking into account eq. (23), 

1-t’  - -  t 

E = J,u - J-, Axe T a(t’)dt’, (30) 

or excluding ,$ and from eq. (29) and using eq. (23), we have 

where r’ = (E,/Eo)r and i + (l/r’)u = E,+ + (E, /T’)E.  
When particular rel&uation phenomena are described, the relations of 

eqs. (11) and (30) or (31) type give dependencies qualitatively agreeing 
with experimental data. In  essence, the quantitative disagreement be- 
tween theory and experiment can be eliminated if it will be taken into 
account that the body possesses a number of relaxation mechanisms and 
that every particular relaxation mechanism causing a relaxation phe- 
nomenon is characterized by definite relaxation and retardation times. It 
may be shown, l9 however, that quantitative disagreement between theory 
and experiment can be eliminated by considering the interactions (co- 
operation) in the system of kinetic units, and in this case the phenomeno- 
logical relationship between “flow” and generalized force” becomes non- 
linear. We shall consider a certain relaxation mechanism associated with 
the motion of certain interacting kinetic units and, as was shown above, 
manifesting itself under respective preset external conditions in a respective 
range of the time (frequency) scale. The motion of particles in such a 
system obviously is of cooperative nature. 

The dependence of time, which is supposed to be a constant value due to 
the linearity of relation (27), upon the activation energy and the tempera- 
ture is usually expressed by an Arrhenius-type relation 

U / k T  r = Ae 

where A = const. and k is the Boltzmann constant. Taking into account 
that r = X(O)/L,  we may write L = Lo’e-U/kT. 

In  the system of kinetic units responding to the external perturbation, a 
certain internal rearrangement will occur whose degree can be characterized 
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by value R (or AR if at the initial time R # 0). Naturally, in the presence 
of interaction in the considered system the rearrangement will also have 
an effect on the profile of the potential surface, i.e., a portion of the po- 
tential barrier caused by the interaction of particles responding to the ex- 
ternal perturbation will change in the process of the system’s response. 

At the same time the contribution made to the value of the potential 
barrier by the interaction with kinetic fragments forming another sub- 
system in the given body will remain unchanged in the process of response, 
since these fragments do not respond to the preset external perturbation. 
It may be considered in the first approximation that the value of the po- 
tential barrier change is proportional to R (or AR), i.e., AU = yR.  

Assume then that when the external field is applied, the mobility of 
kinetic units characterized by value L will decrease owing to the increase 
of the potential barrier in the process of the internal rearrangement. 

Thus, when considering the response of the system of interacting parti- 
cles to the effect of external force, we arrive at  the conclusion that the 
phenomenological relationship between the “flow” and the “generalized 
force” is nonlinear: 

R = L(R)X (33) 

U + Y R  _ _ _ _  
where L = Loe kT , L = Loe-OR, and a = r /kT  can characterize the de- 
gree of the cooperative relaxation process. At a << 1, when the interaction 
in the considered system is negligibly small, the ordinary relation (27) takes 
place instead of eq. (33). Note that in this case the nonlinearity does 
not result from considering the great deviations from the equilibrium state, 
but from the interaction in the responded system of kinetic units of the 
given kind. 

Thus, using eq. (33) instead of eq. (27), we can in the usual way (as was 
done above) obtain equations similar to eq. (31) but having factors depend- 
ing on R.  

Note at  once the difference between the relation for r resulting from the u 

U--00 

above-mentioned this relation is r = Ae -) and the formula = AekT 
proposed by Alexandrov and Gurevich. Value U is the energy of interaction 
of kinetic units with the external field, while value yR is the change of the 
potential barrier caused by the motion of kinetic units in the process of 
response to the external perturbation. As follows from the formula pre- 
sented by Alexandrov and Gurevich, the processes of relaxation of deforma- 
tion or creep will be described by the constant r ,  while the dependency 
r = r (R)  shows that r will change with time. Besides, if the external 
perturbations considered herein are not so great, the value of a m  can be 
neglected. 

As is known,u)-22 the experimental data associated with the relaxation 
of stress may be well approximated with the belp of Kolraush’s empirical 
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lnt, min. 
Fig. 1. Dependency of T‘ on time for polyethylene of high density at temperature of 

2OoC (extension deformation 2.5%). 

relation u = U, + u’eatx, where a and K are constants (0 < K < 1). 
eq. (31) we obtain for the stress relaxation 

From 

1 Em 
T 7‘ 

a + , u = - E .  (34) 

Solving this equation to obtain u, we have 

(35) u = u , +  u’e -f@) 

wheref(t) = dt’/T’oexp(a’’[uo - u ( t ’ ) ] ) ,  a” = a/hEo, a’ = a0 - urn = 

E’E, T’ = E,/Eo roexp(aR), and R is determined by eq. (23). 
To determine the form of function f(t), it is necessary to plot the de- 

pendency of T’ on time, using for the purpose the experimental data and 
relation r’ = ro’exp{a’’[uo - ~ ( t ) ] ) .  Dependencies of T’ on time are 
presented in Figures 1 and 2 in double logarithmic coordinates. These 
dependencies are calculated on the basis of data taken from worksmVza for 
polyethylene of high density a t  a temperature of 20°C and lump isotactic 
polypropylene at  a temperature of 18”C, with the following constant 
values: a’’ = 0.083 cm2/kg TO’ = 0.45 min, a, = 80 kg/m2, uo = 180 
kg/mm2, and a’‘ = 0.057 cm2/kg TO‘ = 0.0227 min, urn = 102 kg/cm2 
uo = 299.3 kg/mm2, respectively. It is seen from the figures that the 
dependency of r’ on time may be approximated by the relation r’ = 
l /Katl-k and, as at t = 0, u = (TO and 7’ = TO‘, but not zero, it can be 
approximated more precisely by relation 

sd 

where 
of eq. (35) we can write - a(t + = const. Then for f ( t )  we have f ( t )  = a(t + i$)”a&“ and instead 

+ ahK 
u = urn + u‘e. (37) 

At t = 0, as it should be, u = uo; and at t+ a, u- urn. 
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Fig. 2. Dependency of 7' on time for lump isotactic polypropylene at temperature of 
18°C (compression deformation 5.8%). 

The tangent of the inclination angle of the straight lines shown in Fig- 
ures 1 and 2 is equal to 0.75 and 0.80, respectively, which corresponds to 
the values of the constants a and K at which the used experimental data are 
approximated by the Kolraush relation. The constant t is sufhiently 
small (for polyethylene, to = 0.0196 min), i.e., it can be taken into con- 
sideration only for sufficiently small time intervals, while for other in- 
tervals this constant can be practically neglected. Note also that a t  t - it follows from eq. (36) that 7' = OJ, while according to r' = r0'- 

It can be supposed that a t  sufficiently high times 
the dependency of 7' on time of eq. (43) type is disturbed and, hence, the 
Kolrawh relation will deviate from the experimental dependencies or the 
following should be supposed: at sufficiently high t (considerably higher 
than T U  = (l /a)l*K),  which practically tends toward infinity, u in eq. (37) 
reaches its equilibrium value. This time interval is final, however, and for 
any other process it can be sufficiently small (considerably smaller than 
TU characterizing this process). Therefore it cannot occur during the 
considered interval t (the system of kinetic units fail to respond to the 
external perturbation). Hence, in eq. (36)) t is high but final and therefore 
the value of 7' determined by this relation is also final. 

From the physical viewpoint, the tendency of 7' toward rP at  the transi- 
tion of the systems from one equilibrium state to another is quite reason- 
able. At t + m ,  u - and 7' -+ rp', where TO' characterizes the mobility 
of kinetic units in the absence of the external field and rPt characterizes 
the mobility of these units in the presence of this field when the relaxation 
process has stopped and the system is in the equilibrium state. 

, 7' --+ rP'. ea"[uo-u(t)l 

In  the case of creep, we obtain from eq. (31) 

1 J ,  
€ + - e = - e  

7 7 
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lnt, hours 

Fig. 3. Dependency of T on time for poly(methy1 methacrylate) at temperature of 20°C 
(initial stress u = 252 kg/cm2). 

or 

a! 
dt’/roexpfe(t’) - EO], a‘ = - and E‘ = E, - ro = AX. 

A’ 
AS it follows from eq. (31), times r and r’ are proportional and therefore 
the dependency of r on time should be identical. Accordingly, we may 
write 

(39) - B(t--taK) + BCoK 
€ = E m -  

or, as to is small, 

e = Em - E’e-BtK. 

At small values of constant B in respective time intervals we can re- 
strict ourselves by two members of decomposition eq. (39) and for E we 
shall have the known relation E = e,, + Br’tR. 

Figure 3 presents the dependency of r on time plotted according to rela- 
tion = ~oea‘[40-al on the base of the experimental data obtained by A. P. 
Patrikeev for poly(methy1 methacrylate) a t  a temperature of 20°C. It 
turns out that value B is equal to 0.006 and therefore within a sufficiently 
large time interval this data can be described by the power relation used 
instead of eq. (39). The plot of the dependency presented in Figure 4 is 
based on the following values of constants: to = 0.437%, E‘ = 136.33%, 
B = 0.006, and K = 0.152. Writing the solution of eqs. (34) and (38) 
relative to time, the solution of eq. (34) is as follows: 

t = -~O’e~r“’{[”E~(-a’’u’)] - [--Ei(-a”(u - E,r))]} (40) 

where [ - Ei (- X )  ] is the integral exponential function tabulated in ref. 24. 
Obviously, a t  u = uo, t = 0; a t  u - urn, t - Q) ; and at  a! << 1, u = u, 
+ u‘e-t/“’ 
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0 10 20 30 40 50 

t, hours 

Fig. 4. Comparison of experimental and calculated curvea of creep for poly(methy1 
methacrylate) at temperature of 20°C (initial stress u = 252 kg/cme). 

I I I I 

0 20 40 60 
t, min. 

Fig. 5. Comparison of experimental and calculated curves of stress relaxation for 
polyethylene of high density at temperature of 2OoC (extension deformation 2.5%). 

The solution of eq. (38) will be m follows: 

t =  - 70eP"'([--Ei(-~'e')] - [-Ei(-a'(J,a - € ) ) I ) .  (41) 
A t s = a o , t o = O ;  atc+e,, t-m; andata!<<l ,c= e m -  ofe-t/' 

Relation (41) is simiIar to that obtained by Rabinovich2s from the so- 
called generalized Maxwell equation. Figures 5 and 6 present the experi- 
mental data used in Figures 1 and 2 and the curves calculated from eq. (40) 
a t  the constant values are shown in figures 1 and 2. 

Thus, in the region where a relaxation phenomenon is observed clearly, 
7 changes from ro to rp. Formally, it is possible to take a set of times ri 
each of which corresponds to r = r(R) at a certain moment. And further, 
assuming each ri has its inner parameter, we obtain in the usual way 
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J-cn i 

Or, passing to the continuous set of r and taking this set of r into account’ 
we shall obtain the ordinary relation of the linear theory of viscoelasticity 

where J ( r )  is the function of the distribution of times. 

300 

250 

\ 
%J 
c 

200 

I50 I I I 

20 40 60 

t, min. 

Fig. 6. Comparison of experimental and calculated curves of stress relaxation for iso- 
tactic polypropylene (compression deformation 5.8%). 

I n  this case the description with the help of a set of T also leads to  the 
nonlinearity of the relationship between the “flow” and the “generalized 
force.”26 

Really, at u = const. we obtain from eq. (43) the following expression for 
R: 

Differentiating eq. (44) in time and dividing the obtained expression by 
eq. (44) we find 

A = -$(t)(R - R) (45) 
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where $(t) = J(T)T e-t’7 d r /  J(7)e-l” dr.  It is quite obvious 
J 7a 1 J 7 0  

that if eq. (27) is not linear, we obtain eq. (45). 
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